
  

  

Abstract—Dynamic environment representation is an 

important and demanding topic in the field of autonomous 

driving. One of the generic ways to estimate the surrounding 

world of an intelligent vehicle is to use dynamic grid maps. 

However, there are still several unsolved challenges in the grid-

based tracking solutions like the ability to converge faster and 

providing a more efficient way to fuse multi-sensorial 

information. In this work, we address both of these challenges as 

a single probabilistic estimator. First, we treat the grid map 

estimation process as a multi-channel tracking mechanism. In 

particular, we use a particle filter based solution to integrate 

both the occupancy and semantic grids. Second, we adapt the 

idea of simultaneous grid cell tracking and object shape 

estimation into the grid map domain and propose “self-localizing 

tracklets”, which are individual particle filter based estimators 

that are used for two main tasks: stabilizing the position 

estimation accuracy of dynamic cells with respect to the object 

boundary, and estimating a better object shape. The presented 

concepts offer an improved representation flexibility and a 

faster algorithm convergence. 

I. INTRODUCTION 

Dynamic environment perception is one of the core 
functions of an autonomous vehicle. The ability to reliably 
detect the surrounding traffic area plays an important role in 
many components of a self-driving car such as path planning, 
behavior generation, collision avoidance or self-localization. 
The complexity of developing a robust solution to perceive the 
dynamic world comes from different challenges. The 
autonomous vehicle should be able to cope with various use 
cases where the surrounding environment is crowded and 
unpredictable, with multiple static and dynamic objects (cars, 
poles, pedestrians, walls, bicycles etc.). This might include 
traffic intersections, construction zones, or parking areas. 

In order to cover the perception requirements in different 
complex scenarios, various types of sensors are employed. 
Typically, laser scanners are used to provide accurate position 
[4], [6], [15], [24], stereo-vision or surrounding cameras are 
employed to provide both range and semantic information 
[10], [16], [17], while radars are more suitable to detect motion 
[8]. As the technology evolves and the computational power 
increases, perception and tracking architectures achieve a 
more comprehensive understanding of environment through 
sensor information fusion [5], [9], [10]. However, one has to 
consider that the vehicle’s sensor setup often changes. As soon 
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as the market price allows it, new, better performing sensors 
can be added or can replace older ones. Sometimes this might 
affect the entire processing chain. Therefore one of the 
imposed challenges is to design a dynamic environment 
estimation component that is scalable (new sensors can be 
added) and flexible (the estimation solution could be easily 
decoupled or adapted to different combination of sensors). At 
the same time, the environment perception should be able to 
cope with the cases when a part of the sensor system fails, by 
generating the right model with the remaining sensors.  

The existing algorithms aim to provide the environment 
perception at different abstraction layers, depending on the 
complexity of the surrounding world, by pointing to various 
modeling and tracking solutions. A considerable research 
work has been focused on detecting obstacles in traffic 
scenarios [2], [3]. Some approaches attempt to model objects 
at a higher abstraction level by using oriented boxes [6], or L-
shape models [4]. These simple models are convenient to 
describe structured environments such as on-road vehicles in 
highway scenarios. As long as the traffic participants fit the 
model this approach works well. However, the box 
representation is not sufficient to describe more sophisticated 
and unpredictable infrastructure. In order to improve the 
robustness various algorithms try to find a trade-off between 
the representation flexibility and computational efficiency. For 
example, the dynamic objects are modelled as deforming and 
moving contours [18], [20], parametrized curves [19], 
individually tracked 3D points [21], boxes with adaptive size 
[6], point sets describing rigid objects [24], voxels [22] or 
dynamic stixels [17]. 

A different abstraction layer is the result of estimating the 
environment at an intermediate level – a level that is able to 
provide higher accuracy, and flexibility than the object 
representations and a lower processing time than dense 3D 
point-cloud tracking methods. A well-established intermediate 
representation approach is grid mapping. Grid maps discretize 
the surrounding world into grid cells and keep the evidence of 
properties like occupancy [1]. The first occupancy grid 
implementations applied a Bayesian estimation scheme to 
incorporate successive range measurements and assumed a 
stationary environment. Later, various techniques were 
proposed to model and track dynamic occupancy grids. Coue 
et al [26] associate random variables to each cell for estimating 
occupancy and velocity. In Dansescu et al. [11] a particle filter 
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mechanism is used to estimate the grid cell occupancy and 
speed. The particles are considered to be independent 
hypotheses that have their own position and velocity. In [7], 
Nuss et al. present an approximation of the particle-filter based 
grid estimation, applying the Dempster-Shafer theory of 
evidence. In [13], [14] the particle filtering is only employed 
to estimate velocities. A mix of static and dynamic particles is 
applied in [14]. Early approaches were limited to estimating 
position and/or speed by projecting some form of range 
information (stereo, laser, radar) into the grid space and 
applying a Bayesian estimation. Recent approaches, however, 
improve the grid estimation by employing new measurement 
properties. For example in [12], Danescu et. al. extend the 
particle state with an additional dimension, the height. In [23], 
two grid maps (intensity and occupancy) are used to extract a 
set of rectangular 3x3 grid blocks. A Rao-Blackwellised 
solution is employed as a main estimator, where a particle 
model is extended with the intensity and occupancy 
information and is weighted based on how well it matches the 
extracted measurement blocks. Although the block-based 
approach is able to incorporate the appearance information, it 
is limited only to the close proximity of a particle.   

In general, the grid-based tracking solutions have a 
common limitation. They are not able to estimate with high 
accuracy the state of cells belonging to large and uniform grid 
areas. For example, a particle predicted in the middle of a 
larger object can be assigned to any of the occupied cells, thus 
leading to higher uncertainties due to the ambiguous data 
association. In order to improve the estimation accuracy, for 
uniform grid areas (i.e. in the middle of large objects with the 
same occupancy values), we would need to use larger patches, 
employ extra features from various sensors, or increase the 
number of particles. Therefore, one of the questions that arises 
is: how to incorporate more knowledge about the surrounding 
world in the particle state, increase the flexibility and still keep 
a fixed memory space for each particle? 

In this work we focus on extending the dynamic grid map 
estimation with two concepts. First, we treat the estimation 
process as a multi-channel tracking mechanism. A channel is 

a separate grid map that projects a group of sensors into a 2D 
space of discretized cells and has its own measurement model. 
Specifically, our estimation solution is based on using two 
channels: an occupancy grid and a semantic grid. Second, we 
introduce a particle-filter based estimator where the particle 
model is extended with partial knowledge about a given object 
shape, thus creating a bridge between low-level particle world 
and high-level object world. This concept helps us to “anchor” 
a given particle to a fixed sub-set of features pre-selected from 
a potential object hypothesis (grid blob). In other words, each 
particle has its own local map of object landmarks. These 
landmarks are used in the tracking process as an additional 
knowledge about the rigid object shape. Instead of keeping one 
big set of particles, we employ multiple smaller independent 
populations of samples organized into tracklets. Although, all 
particles from various tracklets share the same measurement 
space, they know the group (tracklet) they belong to. This 
strategy provides a higher flexibility: 

• Some of the tracking operations (creation, deletion or 
update) can be performed by manipulating the particles in 
batches, at the tracklet level. 

• A common grid cell property (e.g. semantic label, object 
ID etc.) is stored at the tracklet level and can be accessed 
by all its particles without the need of replicating the same 
data at the particle level. For example, all the particles 
could share the same semantic label stored as a tracklet 
property. 

• Similarly to FastSLAM techniques [24] that use a set of 
measured landmarks to localize a robot in the map, the 
intermediate tracklet entities are self-localizing 
themselves with respect to an object boundary. Therefore 
we minimize the effect of “drifting tracklets” inside big 
and uniform objects due to the ambiguous particle-to-
measurement associations. Although the extending 
particle model with landmarks inevitably increases the 
algorithm complexity, in the end we show that this is 
compensated by the fact that less particles are required to 
match the target. 

Figure 1.  System Overview. 



  

We will refer to the proposed approach as Multi-Layer 
Particle Filter-based Tracking (MLPT) method. The rest of the 
paper is structured as follows: the overall system overview and 
processing pipeline is presented in the next chapter. Chapter 
III presents the concept of self-localizing tracklets and multi-
channel grid estimation by using a grid-based particle filter 
mechanism. Chapter IV describes the main steps of MLPT. 
The experimental results are presented in the Chapter V 
whereas the conclusions about this work are described in the 
last chapter. 

II. SYSTEM OVERVIEW 

This section provides an overview of our proposed 
approach and how the main system components are 
interconnected (see Fig. 1).  The general processing flow can 
be decomposed into three main stages. First, the raw sensor 
information is transformed into more compact, intermediate 
data structures. The radar measurements are converted into a 
point set including both position and velocity properties. The 
radar sensors have similar description as in [28]. The stereo-
vision images and LiDAR raw point clouds are both 
transformed into semantic Stixel elements. The Stixel 
abstraction model is a compact and rich medium-level 
representation in form of vertically oriented rectangles that 
incorporate both depth and semantic information [16], [17]. 
Besides the provided data structures, every sensor’s input 
comes with its own pre-defined measurement model. 

In the second stage of the processing flow, the medium-	level representations are projected into evidence grid 
channels. To generalize the description, a channel can be 
computed by integrating multiple sensors and a sensor can 
contribute to multiple channels. In our specific case, we 
compute two measurement grids – an occupancy grid and a 
semantic grid. However, the proposed solution can be 
extended by adding new channels (e.g. heights, gradients etc.) 

The measurement occupancy grid is obtained by integrating 
the range measurements from all the sensors accumulated 
during a fixed time interval. The measurements are combined 
into the grid space by applying the Dempster-Shafer theory of 
evidence where each cell is described by a mass of occupied 
and free. Its occupancy probability can be recovered by using 
the so called pignistic transformation. More details about the 
occupancy grid creation is provided in [7].  

The measurement semantic grid integrates both the classified 
radar targets [28] and the Stixel world into the grid space. As 
a given object label (e.g. pedestrian, car, bicycle etc.) is 
associated with a confidence score [17], a semantic grid cell 
stores a maximum number of K object labels with the highest 
confidence.  

Both grid channels are of the same size, and are aligned in 
space (a given grid cell index describes the same position in 
the environment), and time (the input measurements are 
synchronized and are collected into the grid space during a 
fixed time-slice). The last stage of the processing flow is the 
proposed hybrid particle filter based estimator which is the 
main focus of this work and is described in the next sections.  

III. DYNAMIC ENVIRONMENT ESTIMATION 

In general, the main objective of a tracking process is to 
estimate the current state �� of a target from a set of noisy 

measurements ��:� collected up to the time t. The estimation of 
the posterior probability distribution �(��|��:�) at time t can be 
formulated as a recursive Bayesian update rule using the 
probabilistic motion model �(��|����) of the target and a 
defined measurement model �(��|��):  
�(��|��:�) = 
�(��|��) � �(��|����)�(����|��:���)����� (1) 

where 
 describes the normalization constant. 

One specific implementation of the Bayes filter equation 
described above can be done by using a particle filter 
mechanism. At each moment in time t, the particle filter 

algorithm maintains a set of N samples {〈��[�], ��[�]〉}���..� to 

approximate the posterior �(��|��:�). Each particle ��[�] 
describes a guess of the object state and has an associated 

weight ��[�].  
A standard particle filter can be applied to multiple 

estimation problems involving non-linear motion or 
measurement processes. However, particle filters are restricted 
to estimate low dimensional states and are not suitable for 
representing larger states where the number of required 
samples to approximate the true belief might grow 
exponentially once more properties are incorporated into the 
state. As it is shown in some applications such as object 
tracking [6], [20], [23] or simultaneous localization and 
mapping [25], a common way to deal with larger states is to 
use a Rao-Blackwellised particle filter (RBPF) [27]. In a RBPF 
algorithm, the samples are drawn only from a part of the state 
(e.g. object motion), while the other state parameters are 
attached to each particle and are estimated in closed form. In 
order to improve the accuracy, we use the same Rao-
Blackwellization process to introduce “richer” particles for 
modeling two main grid estimation parts that are combined 
into one single state estimator. The two parts are: self-
localizing tracklets and multi-channel grid estimation. 

A.  Self-localizing tracklets 

The majority of grid-based particle filters approximate the 
cell state with a set of samples. The particles are not assigned 
to a specific object hypothesis but rather can be propagated 

 

 

Figure 2.  The tracklet model described by its position (x.y) and four 

reference object landmarks (blue) initiallized from the blob contour (light 

gray). The ellipses depict the landmark covariances. Although the example 

shows only one tracklet assigned to one grid cell (red), we initialize new 

tracklets with random landmark in every newly observed cell (a measurement 

cell that was not associated yet to any existing tracklets). 



  

into different grid cells according to their own motion model. 
As soon as the new target cells are sensed as occupied, the 
particles receive higher weights. In other words, the particles 
are weighted without being aware of their own position with 
respect to the tracked object hypothesis (see Fig. 3, left). 

The central point of our proposed concept is to bring the 
idea of simultaneous grid cell tracking and object shape 
estimation into the grid map domain, at the cell level.   

We consider that a given dynamic grid cell is part of a 
larger object hypothesis. Besides its position ( , !) and 

velocity ("# , "$) it is also represented by its relative position 

to K object landmarks %� = {&�,�, … , &�,(} initialized by 

randomly selecting a set of points from the object contour (see 
Fig. 2).  In our case a landmark is defined as a 2D feature point 
belonging to a static or dynamic object contour. The landmark 
state is recursively updated based on the new observations, 
thus covering the change in blob-shape. 

For every newly observed grid cell we create a fixed 
number N of particles. This group of particles will describe an 
independent particle-filter estimator – a tracklet. Thus, instead 
of keeping one big set of particles for the entire grid, we 
employ multiple smaller independent populations of particles 
organized into tracklets. In this context a tracklet position and 
velocity at time t will be denoted )� = [ � , !� , "#,� , "$,�]*. 

Additionally the tracklet state will be described by a unique set 
of landmarks %� (see Fig. 2). In the end, different tracklets 
belonging to one grid blob will be represented by different 
combination of landmarks selected from the set of blob 
contour points. However the samples belonging to one tracklet 
will represent the hypotheses of the same unique set of 
landmarks used to define the tracklet state (all the particles will 
have more or less the same partial shape). The problem can be 
formulated probabilistically as estimating the joint posterior: 

 �()�, %�|��:�) (2) 

Similarly to FastSLAM approaches [25] the problem can 
be implemented with Rao-Blackwellised particle filter and can 
be factored into independent estimators as: 

 �()�, %�|��:�) = �()�|��:�)�(%�|)�, ��:�)  

 = �()�|��:�)∏ �,&�,-.)�, ��:�/01��  (3) 

The main motivation of adopting this extension in the grid 
map space comes actually from the need of stabilizing the 
effect of “drifting” tracklets by improving the particle-to-
measurement matching. More exactly, without shape 
information, which is modeled here as a set of anchor points, 
a tracklet would be more likely to be described by a higher 
uncertainty due to the limited ability of simple particles 
(described only by )�) to confirm the “right” measurements 
inside large and uniform blobs where every cell has the same 
occupancy value (see Fig. 3, left). By making the analogy with 
the SLAM techniques, we also could say that our tracklet 
models are able to self-localize themselves with respect to the 
object boundary (see Fig. 3, right). At the same time, this 
strategy allows us to create a bridge between low-level particle 

world and high-level object world by incorporating the partial 
knowledge about object shape. 

B.  Multi-channel grid estimation 

The second estimation part aims to integrate the 
information that is organized into grid channels. As in the 
current work the raw sensor data is structured within 
occupancy and semantic channels, at each point in time t, for 
each grid cell position we will define an appearance vector At 
described by two values: an occupancy value ot and a semantic 
label lt: 

 2� = [3� , 4�]* (4) 

Similarly to the previous part, the object motion and 
appearance estimation become joint estimation problem and 
can be factored as: 

 �()�, 2�|��:�) = �()�|��:�)�(2�|)�, ��:�)  

 = �()�|��:�)�(3�|)�, ��:�)�(4�|)�, ��:�) (5) 

The two terms �(3�|)�, ��:�) and �(4�|)�, ��:�) represent the 
occupancy and label posteriors that are conditioned on )� – the 
object position and speed.  

C.  Combining the two problems into one estimator 

Finally, the two update equations presented in the previous 
sections can be combined into one estimator as: 

 �()�, 2�, %�|��:�)  

 = �()�|��:�)	�(3�|)�, ��:�)  

 �(4�|)�, ��:�)∏ �,&�,-.)�, ��:�/01��  (6) 

 

Figure 3.  An intuitive example comparing two populations of particles. Both 

cases contain only three particles. All three particles are considered to be

initialized inside the yellow grid cell and are predicted later into different other 

neighbor cells (here all 3 particles belong to the same tracklet created for the 

yellow cell). We consider that in both cases the same motion model and the 

same measurement model is used. However a difference is that the particles in 

the right image are extended with extra knowledge by incorporating 4 

landmarks per particle. Intuitively one can see that in the left scenario all the 

particles would receive a similar weight even they were predicted into different 

cells. However, the right scenario gives us the possibility to better distinguish 

between the three predicted particles as soon as we can match the landmarks 

with the measured object contour. In this specific case the sample s[2] (with 

blue landmarks) should receive a higher weight due to a better allignment of 

the landmarks with the blob contour. 



  

Therefore, for each occupied grid cell we initialize a 
tracklet. The full posterior over tracklet positions, speed, 
landmarks and appearance components is approximated by a 
set of N particles: 

          {)�[�], 3�[�], 4�[�], (&�,�[�] , Σ�,�[�] ) … , (&�,([�] , Σ�,0[�] ), ��[�]}���..� (7) 

In the equation above the &�,-[�]  and Σ�,1[�]  define the mean and 

2x2 covariance of the k-th landmark, assigned to the i-th 
sample. We adopt an implementation based on a Rao-
Blackwellised particle filter that can be summarized as 
follows. Each tracklet is represented by a population of 
particles. The particles are sampled from the position and 
velocity. Additionally, the appearance and landmark 
properties are attached to each individual sample. Both the 
appearance and landmark components contribute to a more 
precise particle weighting and are updated in closed form at 
the sample level. 

IV. MLPT DETAILS 

There are several steps to recursively estimate the dynamic 
grid and its corresponding tracklets. Once new measurements 
are available, the following steps are applied: 

1) Prediction: In the prediction step the particles are 
propagated according to their previous state and a linear 
motion model assuming a constant velocity. Additionally, 
each propagated sample is perturbed with a random noise 
component. 

2) Weighting: The weighting step consists in assigning new 
importance weights to every predicted particle. Intuitively, a 
weight should reflect how likely it is that a given sample 
matches the observation. At a point in time t the measurement 
model is described by three individual components, a 

measurement cell likelihood �6��78��[�]9 computed as a 

distance function between the measurement cell and the 

nearest particle, a landmark based likelihood �6��:8��[�]9 

computed based on an alignment error between the 
measurement contours and the particle landmarks and a 

semantic likelihood  �6��;8��[�]9 given the particle’s semantics. 

Further we will refer to these terms as weight factors as they 
will contribute to defining the overall particle importance 
weight. Therefore, if we consider that all three likelihood 

components are independent, the weight �[�] of the i-th 

particle ��[�] can be defined as: 

 �[�] = �6��8��[�]9 = �6��7, ��:, ��;8��[�]9  

 = �6��78��[�]9�6��:8��[�]9�6��;8��[�]9 (8) 

Next, we’ll describe how the three weight components are 
calculated. For calculating the particle-to-measurement 
correspondences and distances we precompute two maps, one 
for defining all distances to the closest occupied points (see 
Fig. 4, center) and second for defining all distances to the 
closest measurement contours (see Fig. 4, right). Additionally, 
each map cell stores the position to the closest observation. 
The particle-to-measurement weight component is calculated 
as: 

 �6��78��[�]9 = �√=>?@ exp	{− EFG=?@G} (9) 

where �H is the distance between the i-th sample and the 

closest occupied point. We model an object contour point 
likelihood given the k-th particle landmark as: 

 �I[1] = �√=>?J exp	{− (EJ[K])G=?JG } (10) 

where �I[1] represents the distance between the k-th landmark 

and its corresponding contour point defined by the distance 
map (see Fig. 4). Thus, for a total of K landmarks the �6��:8��[�]9	factor assigned to the i-th particle can be computed 

according to: 

 �6��:8��[�]9 = ∏ �[1]01��  (11) 

For the semantic weight factor we first define a dissimilarity 
metric between the predicted label 4H (particle label) and the 

measurement label 4L retrieved from the closest occupied 
object cell:  

 �M = 1 − 
I ∙ ℎ(4H, 4L) (12) 

Here ℎ(4H, 4L) is a score function that is defined as: 

 ℎ,4H, 4L/ = QR�, 4H = 4LR=, STUℎSV	4H 	3V	4L 	T�	WXYX3�XRZ, 4H ≠	 4L	  (13) 

and 
I is a normalization constant:  
I = 1/(R� + R= + RZ) 
having R�, R= and RZ as three score values selected such that RZ < R= < R�. The resulted dissimilarity distance is converted 
into the semantic weight factor according to: 

 �6��;8��[�]9 = �√=>?_ exp	{− E_G=?_G} (14) 

3) Update the appearance and landmarks: As presented 
before, according to the Rao-Blackwellisation process, each 
particle has its own local landmark and appearance estimates.  
In order to update the particle landmarks with the newly 

Figure 4.  Occupancy grid. Center: the distance transform in which a cell has 

an assigned distance to the closest occupied point. The colors gradually change 

from blue (low distances) to red (larger distances). The occupied points (inside  

the object) have zero distance (dark blue). Right: a similar distance transform 

in which one cell stores the distance to the closest contour point. The contour 

points are colored with red. (the contour point color is not related to the 

distance transform values). It must be noted that both inside and outside object 

points are considered in the distance transform computation. 



  

associated (closest) contour point positions we use 2x2 
Kalman filters (one per landmark). It must be noted that, 
similarly to [20], the landmark prediction is indirectly done by 
the particle prediction (the landmarks are conditioned on the 
particle state) and follow the motion of the particle.  
Additionally, as also proposed in [23], for each particle its 
occupancy value is updated with the new measurement 
occupancy by using a Binary Bayes filter. However, for the 
simplicity, the semantic labels are kept unchanged.  

4) Estimation: In the estimation step, a weighted average of 
the particle states is used to estimate both: the grid cell states 
and the tracklet states. The grid cell state is estimated by using 
all the particles projected into the same cell (regardless the 
tracklet index). However the tracklet state is estimated by 
considering only its own samples, even if these particles are 
projected into multiple cells.  

5) Resampling and tracklet management: Assuming that 
the particle weights are normalized, for each tracklet, the 
resampling step selects a new set of particles from the previous 
set according to their importance weight by replacing the 
particles with lower weights. For the resampling step, a 
Stochastic Universal Resampling algorithm with linear 
complexity is used. 

The last two steps of the particle filter are tracklet initialization 
and removal. New tracklets are initialized in measurement 
cells that are not sufficiently covered by particles. This is 
checked by computing the sum of unnormalized weights for 
all the particles located in the measurement cell. If the resulted 
sum is less than a given threshold, a new tracklet will be 
initialized by drawing new random hypotheses around the 
measurement cell.  

The tracklets and their corresponding particles are 
discontinued, if they are outside the grid area, or if they are not 
observed or updated for a longer time. 

V. EXPERIMENTAL RESULTS 

For the evaluation, the proposed approach was tested on 
various recorded traffic sequences. In addition, in order to be 
able to confirm the improvements in terms of the result 
accuracy, we have compared our method with a similar 
algorithm based on simulated data.   

Fig. 5 presents some examples of the dynamic environment 
estimation for real traffic scenarios, including the estimated 
dynamic tracklets (top-right image) and the dynamic grid 
(bottom-right image). Both the dynamic tracklets and grid 
cells are colored based on the estimated orientation and speed. 
The results include various obstacles such as static cars, 
vehicle crossing in front of the ego-car, vehicles behind the 
ego-car, or pedestrians walking in the proximity.  

 
 

   

Figure 7. Top: a simulated scenario containing one pedestrian moving in an 

eight-shape trajectory. Bottom-left: the trajectory of the moving pedestrian. 

Bottom-center: the extracted dynamic tracklets represented by speed vectors. 

Bottom-right: the estimated dynamic grid with colored cells. Both tracklets 

and estimated grid cells are two alternative ways to represent the same target 

and are colored based on motion direction and magnitude.  

Figure 6. Top-left: a scenario with one pedestrian crossing in front of the ego-

vehicle from right-near to left-far. Bottom-left: to better illustrate the 

estimation at the tracklet level we selected only one tracklet to be visualized 

and deactivated the others. The image shows the trajectory of the selected 

tracklet (top view). The red dots represent the estimated tracklet landmarks 

while the colored segments show the estimated speeds along the trajectory. 

Right: the visualization of the same scene (top-left image). The green vectors 

denote the target speeds while the cyan dots represent all the estimated 

landmarks from all the existing tracklets in the scene. It can be noted that these 

landmark positions follow the object shape.  

Figure 5. Left: examples from real traffic scenarios. Top-right: the estimated 

dynamic tracklets described by oriented speed vectors. The scene shows  one 

stationary and four moving cars. Bottom-right: an example with the estimated 

grid cells (top view) depicting one stationary vehicle and several walking 

pedestrians. Both the dynamic tracklets and grid cells are colored based on the 

estimated speed orientation and magnitude. Black is for static objects, the 

color values are used to encode the speed orientation. 



  

Fig. 6 presents a scenario with one pedestrian crossing in 
front of the ego-vehicle from right to left (top image). To better 
illustrate the estimation at the tracklet level we activated only 
one tracklet to be visualized and deactivated the others. The 
trajectory of the selected tracklet can be seen in the bottom-left 
image (top view). The red dots describe the estimated tracklet 
landmarks, while the colored segments show the estimated 
speeds along the pedestrian trajectory. If we activate the 
visualization of all the estimated tracklets and their landmarks, 
then we can observe that they are explicitly describing the 
object shape (see Fig. 6, bottom-right image).  

In order to conduct the quantitative evaluation we used a 
simulation environment (see Fig. 7). Basically the simulation 
data, replaced the input sensors and was able to provide the 
object position ground truth at the grid cell level. The proposed 
approach Multi-Layer Particle Filter based Tracking (MLPT) 
was compared with a similar grid-based tracking solution – the 
Dempster-Shafer Probability Hypothesis Density tracking for 
Dynamic Occupancy Grid Maps (we will refer to it as DS-
PHD) [7]. The main objective of our quantitative experimental 
results was to analyze the algorithm convergence and their 
estimation accuracy in terms of root mean squared error 
(RMSE) and standard deviation of the estimated speed and 
distances. The simulated scenario included a pedestrian 
moving in an eight-shape trajectory (see Fig. 7) with a constant 
speed of 2.78 m/s (10km/h). The number of particles in the 
DS-PHD method was set to 8 Milion and remained fixed. 
However, in the current MLPT solution the number of 
particles was fixed to 100 particles per tracklets and depended 
on how many tracklets were used. Additionally, in this test we 
used 3 landmarks per particle. On average, the current 
experiment employed about 85 tracklets at a given point in 
time, which means 8500 particles. For the object speed 
calculation we selected only the cells with an estimated 
occupancy probability above 0.7.  

The last two images in Fig. 7 (bottom-center and bottom-
right) show an example of the estimated tracklets and grid cells 
by applying our approach. The speed estimation results of both 
DS-PHD and proposed MLPT approach are shown in the Fig. 
8 and Table I. It can be seen that the proposed extended particle 
state helps the estimator to converge faster towards the 
ground-truth value and provides a more accurate estimation 
over time. It must be noted that although the DS-PHD tends to 
underestimate the speed in this example it provides similar 
values if we increase the occupancy threshold when computing 
the estimated speed by selecting the cells with the occupancy 
above 0.8. This could be explained by the fact that in the DS-
PHD the occupancy is given by the particle density. The higher 
the particle density the higher the estimation accuracy is.  

Fig. 9 presents the distance estimation. For the comparison 
we used the shortest distance from the ego-vehicle to the 

closest occupied point. Both compared methods tend to 
slightly underestimate the distance calculation. This is 
explained by the fact that particles are spread on a larger area 
around the target, therefore, depending on the parameter set, 
the estimated objects might be larger, and this is translated to 
a difference to up to 0.5m in distance.  

Fig. 10 shows the estimated orientation. Since the 
orientation ground truth is not directly provided, the diagram 
presents comparative orientation estimations. The difference 
in the algorithm convergence can be also observed here. As the 
MLPT approach converges faster to the real object trajectory, 
its orientation is provided earlier (the DS-PHD plotted line is 
slightly delayed by being shifted to the right).  

Figure 8. Top: Speed estimation. Comparison between the DS-PHD [7], an the 

proposed MLPT solution. 

 

Figure 9. Top: Distance estimation. Comparison between the DS-PHD [7], an 

the proposed MLPT solution. 

Figure 10. Top: Estimated Orientation. Comparison between the DS-PHD [7], 

an the proposed MLPT solution. 

TABLE I.  SPEED AND DISTANCE ESTIMATION ACCURACY 

Method DS-PHD [7] MLPT (ours) 

Metric RMSE StdDev RMSE StdDev 

Speed 0.6884 0.2572 0.3641 0.3496 

Distance 0.3666 0.2799 0.3167 0.1445 

Nr. of 

particles 
8 Mil Approx. 8500 

 



  

Table I centralizes the root mean squared error (RMSE) 
and standard deviation (StdDev) for the speed and distance 
using the two methods.  

The DS-PHD algorithm is described by a highly-efficient 
parallel implementation (see [7] for more details), while the 
presented MLPT method was implemented and tested on a 
CPU architecture. However, based on the results presented 
above, one of the first observations is that the MLPT solution 
requires much less particles to estimate the dynamic state due 
to a more precise particle to measurement matching. This is 
explained by the fact that MLPT uses more rich particles 
extended with a set of landmarks which represent the partial 
knowledge about the shape of the tracked object hypothesis.   

VI. CONCLUSIONS 

This work focused on bringing new improvements in the 
dynamic grid map level for a better environment 
representation. Our main objective was to model and test a 
more generic and, at the same time, flexible method to track 
free-form environments. We developed a probabilistic 
solution based on a particle filter that combines two important 
perception tasks: fusing multi-sensor data into one estimator 
and stabilizing the residual errors in the position and speed 
estimation. The results prove that the idea of using richer 
particles including shape and appearance information 
increase the grid estimation accuracy. Although, grouping 
particles into individual tracklets and using hybrid filters has 
a potential to develop real time solutions, this topic has not 
been fully explored yet. One of the future works would be to 
focus on optimizing the current approach, as well as 
incorporating new grid channels such as the velocity grid 
computed from radar measurements.  
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