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Abstract—Dynamic environment representation is an
important and demanding topic in the field of autonomous
driving. One of the generic ways to estimate the surrounding
world of an intelligent vehicle is to use dynamic grid maps.
However, there are still several unsolved challenges in the grid-
based tracking solutions like the ability to converge faster and
providing a more efficient way to fuse multi-sensorial
information. In this work, we address both of these challenges as
a single probabilistic estimator. First, we treat the grid map
estimation process as a multi-channel tracking mechanism. In
particular, we use a particle filter based solution to integrate
both the occupancy and semantic grids. Second, we adapt the
idea of simultaneous grid cell tracking and object shape
estimation into the grid map domain and propose “self-localizing
tracklets”, which are individual particle filter based estimators
that are used for two main tasks: stabilizing the position
estimation accuracy of dynamic cells with respect to the object
boundary, and estimating a better object shape. The presented
concepts offer an improved representation flexibility and a
faster algorithm convergence.

1. INTRODUCTION

Dynamic environment perception is one of the core
functions of an autonomous vehicle. The ability to reliably
detect the surrounding traffic area plays an important role in
many components of a self-driving car such as path planning,
behavior generation, collision avoidance or self-localization.
The complexity of developing a robust solution to perceive the
dynamic world comes from different challenges. The
autonomous vehicle should be able to cope with various use
cases where the surrounding environment is crowded and
unpredictable, with multiple static and dynamic objects (cars,
poles, pedestrians, walls, bicycles etc.). This might include
traffic intersections, construction zones, or parking areas.

In order to cover the perception requirements in different
complex scenarios, various types of sensors are employed.
Typically, laser scanners are used to provide accurate position
[4], [6], [15], [24], stereo-vision or surrounding cameras are
employed to provide both range and semantic information
[10], [16], [17], while radars are more suitable to detect motion
[8]. As the technology evolves and the computational power
increases, perception and tracking architectures achieve a
more comprehensive understanding of environment through
sensor information fusion [5], [9], [10]. However, one has to
consider that the vehicle’s sensor setup often changes. As soon
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as the market price allows it, new, better performing sensors
can be added or can replace older ones. Sometimes this might
affect the entire processing chain. Therefore one of the
imposed challenges is to design a dynamic environment
estimation component that is scalable (new sensors can be
added) and flexible (the estimation solution could be easily
decoupled or adapted to different combination of sensors). At
the same time, the environment perception should be able to
cope with the cases when a part of the sensor system fails, by
generating the right model with the remaining sensors.

The existing algorithms aim to provide the environment
perception at different abstraction layers, depending on the
complexity of the surrounding world, by pointing to various
modeling and tracking solutions. A considerable research
work has been focused on detecting obstacles in traffic
scenarios [2], [3]. Some approaches attempt to model objects
at a higher abstraction level by using oriented boxes [6], or L-
shape models [4]. These simple models are convenient to
describe structured environments such as on-road vehicles in
highway scenarios. As long as the traffic participants fit the
model this approach works well. However, the box
representation is not sufficient to describe more sophisticated
and unpredictable infrastructure. In order to improve the
robustness various algorithms try to find a trade-off between
the representation flexibility and computational efficiency. For
example, the dynamic objects are modelled as deforming and
moving contours [18], [20], parametrized curves [19],
individually tracked 3D points [21], boxes with adaptive size
[6], point sets describing rigid objects [24], voxels [22] or
dynamic stixels [17].

A different abstraction layer is the result of estimating the
environment at an intermediate level — a level that is able to
provide higher accuracy, and flexibility than the object
representations and a lower processing time than dense 3D
point-cloud tracking methods. A well-established intermediate
representation approach is grid mapping. Grid maps discretize
the surrounding world into grid cells and keep the evidence of
properties like occupancy [1]. The first occupancy grid
implementations applied a Bayesian estimation scheme to
incorporate successive range measurements and assumed a
stationary environment. Later, various techniques were
proposed to model and track dynamic occupancy grids. Coue
et al [26] associate random variables to each cell for estimating
occupancy and velocity. In Dansescu et al. [11] a particle filter



Radar

:

Traffic views: front, left, right, back E

E

:

i

Stereo-Vision !

Laser

Semantic Stixels - 3D View
Figure 1.

mechanism is used to estimate the grid cell occupancy and
speed. The particles are considered to be independent
hypotheses that have their own position and velocity. In [7],
Nuss et al. present an approximation of the particle-filter based
grid estimation, applying the Dempster-Shafer theory of
evidence. In [13], [14] the particle filtering is only employed
to estimate velocities. A mix of static and dynamic particles is
applied in [14]. Early approaches were limited to estimating
position and/or speed by projecting some form of range
information (stereo, laser, radar) into the grid space and
applying a Bayesian estimation. Recent approaches, however,
improve the grid estimation by employing new measurement
properties. For example in [12], Danescu et. al. extend the
particle state with an additional dimension, the height. In [23],
two grid maps (intensity and occupancy) are used to extract a
set of rectangular 3x3 grid blocks. A Rao-Blackwellised
solution is employed as a main estimator, where a particle
model is extended with the intensity and occupancy
information and is weighted based on how well it matches the
extracted measurement blocks. Although the block-based
approach is able to incorporate the appearance information, it
is limited only to the close proximity of a particle.

In general, the grid-based tracking solutions have a
common limitation. They are not able to estimate with high
accuracy the state of cells belonging to large and uniform grid
areas. For example, a particle predicted in the middle of a
larger object can be assigned to any of the occupied cells, thus
leading to higher uncertainties due to the ambiguous data
association. In order to improve the estimation accuracy, for
uniform grid areas (i.e. in the middle of large objects with the
same occupancy values), we would need to use larger patches,
employ extra features from various sensors, or increase the
number of particles. Therefore, one of the questions that arises
is: how to incorporate more knowledge about the surrounding
world in the particle state, increase the flexibility and still keep
a fixed memory space for each particle?

In this work we focus on extending the dynamic grid map
estimation with two concepts. First, we treat the estimation
process as a multi-channel tracking mechanism. A channel is
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a separate grid map that projects a group of sensors into a 2D
space of discretized cells and has its own measurement model.
Specifically, our estimation solution is based on using two
channels: an occupancy grid and a semantic grid. Second, we
introduce a particle-filter based estimator where the particle
model is extended with partial knowledge about a given object
shape, thus creating a bridge between low-level particle world
and high-level object world. This concept helps us to “anchor”
a given particle to a fixed sub-set of features pre-selected from
a potential object hypothesis (grid blob). In other words, each
particle has its own local map of object landmarks. These
landmarks are used in the tracking process as an additional
knowledge about the rigid object shape. Instead of keeping one
big set of particles, we employ multiple smaller independent
populations of samples organized into tracklets. Although, all
particles from various tracklets share the same measurement
space, they know the group (tracklet) they belong to. This
strategy provides a higher flexibility:

e Some of the tracking operations (creation, deletion or
update) can be performed by manipulating the particles in
batches, at the tracklet level.

e A common grid cell property (e.g. semantic label, object
ID etc.) is stored at the tracklet level and can be accessed
by all its particles without the need of replicating the same
data at the particle level. For example, all the particles
could share the same semantic label stored as a tracklet

property.

e  Similarly to FastSLAM techniques [24] that use a set of
measured landmarks to localize a robot in the map, the
intermediate  tracklet entities are self-localizing
themselves with respect to an object boundary. Therefore
we minimize the effect of “drifting tracklets” inside big
and uniform objects due to the ambiguous particle-to-
measurement associations. Although the extending
particle model with landmarks inevitably increases the
algorithm complexity, in the end we show that this is
compensated by the fact that less particles are required to
match the target.



We will refer to the proposed approach as Multi-Layer
Particle Filter-based Tracking (MLPT) method. The rest of the
paper is structured as follows: the overall system overview and
processing pipeline is presented in the next chapter. Chapter
III presents the concept of self-localizing tracklets and multi-
channel grid estimation by using a grid-based particle filter
mechanism. Chapter IV describes the main steps of MLPT.
The experimental results are presented in the Chapter V
whereas the conclusions about this work are described in the
last chapter.

II. SYSTEM OVERVIEW

This section provides an overview of our proposed
approach and how the main system components are
interconnected (see Fig. 1). The general processing flow can
be decomposed into three main stages. First, the raw sensor
information is transformed into more compact, intermediate
data structures. The radar measurements are converted into a
point set including both position and velocity properties. The
radar sensors have similar description as in [28]. The stereo-
vision images and LiDAR raw point clouds are both
transformed into semantic Stixel elements. The Stixel
abstraction model is a compact and rich medium-level
representation in form of vertically oriented rectangles that
incorporate both depth and semantic information [16], [17].
Besides the provided data structures, every sensor’s input
comes with its own pre-defined measurement model.

In the second stage of the processing flow, the medium-
level representations are projected into evidence grid
channels. To generalize the description, a channel can be
computed by integrating multiple sensors and a sensor can
contribute to multiple channels. In our specific case, we
compute two measurement grids — an occupancy grid and a
semantic grid. However, the proposed solution can be
extended by adding new channels (e.g. heights, gradients etc.)

The measurement occupancy grid is obtained by integrating
the range measurements from all the sensors accumulated
during a fixed time interval. The measurements are combined
into the grid space by applying the Dempster-Shafer theory of
evidence where each cell is described by a mass of occupied
and free. Its occupancy probability can be recovered by using
the so called pignistic transformation. More details about the
occupancy grid creation is provided in [7].

The measurement semantic grid integrates both the classified
radar targets [28] and the Stixel world into the grid space. As
a given object label (e.g. pedestrian, car, bicycle etc.) is
associated with a confidence score [17], a semantic grid cell
stores a maximum number of K object labels with the highest
confidence.

Both grid channels are of the same size, and are aligned in
space (a given grid cell index describes the same position in
the environment), and time (the input measurements are
synchronized and are collected into the grid space during a
fixed time-slice). The last stage of the processing flow is the
proposed hybrid particle filter based estimator which is the
main focus of this work and is described in the next sections.

III. DYNAMIC ENVIRONMENT ESTIMATION

In general, the main objective of a tracking process is to
estimate the current state s; of a target from a set of noisy
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Figure 2. The tracklet model described by its position (x.y) and four
reference object landmarks (blue) initiallized from the blob contour (light
gray). The ellipses depict the landmark covariances. Although the example
shows only one tracklet assigned to one grid cell (red), we initialize new
tracklets with random landmark in every newly observed cell (a measurement
cell that was not associated yet to any existing tracklets).

measurements Zq.; collected up to the time #. The estimation of
the posterior probability distribution p(s;|z1..) at time 7 can be
formulated as a recursive Bayesian update rule using the
probabilistic motion model p(s;|s;—1) of the target and a
defined measurement model p(z;|s;):

p(s¢lzye) = np(ztlst)fp(stlst—l)p(st—l|Z1:t—1)dst—1 (D

where 7 describes the normalization constant.

One specific implementation of the Bayes filter equation
described above can be done by using a particle filter
mechanism. At each moment in time ¢, the particle filter
algorithm maintains a set of N samples {(SF],Wt[l])}izluN to
approximate the posterior p(s;|z;.). Each particle SF]
describes a guess of the object state and has an associated
weight wt[l].

A standard particle filter can be applied to multiple
estimation problems involving non-linear motion or
measurement processes. However, particle filters are restricted
to estimate low dimensional states and are not suitable for
representing larger states where the number of required
samples to approximate the true belief might grow
exponentially once more properties are incorporated into the
state. As it is shown in some applications such as object
tracking [6], [20], [23] or simultaneous localization and
mapping [25], a common way to deal with larger states is to
use a Rao-Blackwellised particle filter (RBPF) [27]. In a RBPF
algorithm, the samples are drawn only from a part of the state
(e.g. object motion), while the other state parameters are
attached to each particle and are estimated in closed form. In
order to improve the accuracy, we use the same Rao-
Blackwellization process to introduce “richer” particles for
modeling two main grid estimation parts that are combined
into one single state estimator. The two parts are: self-
localizing tracklets and multi-channel grid estimation.

A. Self-localizing tracklets

The majority of grid-based particle filters approximate the
cell state with a set of samples. The particles are not assigned
to a specific object hypothesis but rather can be propagated



into different grid cells according to their own motion model.
As soon as the new target cells are sensed as occupied, the
particles receive higher weights. In other words, the particles
are weighted without being aware of their own position with
respect to the tracked object hypothesis (see Fig. 3, left).

The central point of our proposed concept is to bring the
idea of simultaneous grid cell tracking and object shape
estimation into the grid map domain, at the cell level.

We consider that a given dynamic grid cell is part of a
larger object hypothesis. Besides its position (x,y) and
velocity (vy, vy) it is also represented by its relative position
to K object landmarks Q, = {q.1,...,q¢x} initialized by
randomly selecting a set of points from the object contour (see
Fig. 2). In our case a landmark is defined as a 2D feature point
belonging to a static or dynamic object contour. The landmark
state is recursively updated based on the new observations,
thus covering the change in blob-shape.

For every newly observed grid cell we create a fixed
number N of particles. This group of particles will describe an
independent particle-filter estimator — a tracklet. Thus, instead
of keeping one big set of particles for the entire grid, we
employ multiple smaller independent populations of particles
organized into tracklets. In this context a tracklet position and
velocity at time ¢ will be denoted X; = [X¢, V¢, Uy p, vy,t]T.
Additionally the tracklet state will be described by a unique set
of landmarks Q, (see Fig. 2). In the end, different tracklets
belonging to one grid blob will be represented by different
combination of landmarks selected from the set of blob
contour points. However the samples belonging to one tracklet
will represent the hypotheses of the same unique set of
landmarks used to define the tracklet state (all the particles will
have more or less the same partial shape). The problem can be
formulated probabilistically as estimating the joint posterior:

P(Xe, Q¢lZ1.t) (2)

Similarly to FastSLAM approaches [25] the problem can
be implemented with Rao-Blackwellised particle filter and can
be factored into independent estimators as:

P(Xe, QelZ1.e) = P(X¢Z1.)P(QelX¢, Z1.¢)

= p(X¢|Z1.0) [TR=1 p(qt,klxt' Zl:t) (3)

The main motivation of adopting this extension in the grid
map space comes actually from the need of stabilizing the
effect of “drifting” tracklets by improving the particle-to-
measurement matching. More exactly, without shape
information, which is modeled here as a set of anchor points,
a tracklet would be more likely to be described by a higher
uncertainty due to the limited ability of simple particles
(described only by X;) to confirm the “right” measurements
inside large and uniform blobs where every cell has the same
occupancy value (see Fig. 3, left). By making the analogy with
the SLAM techniques, we also could say that our tracklet
models are able to self-localize themselves with respect to the
object boundary (see Fig. 3, right). At the same time, this
strategy allows us to create a bridge between low-level particle
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Figure 3. An intuitive example comparing two populations of particles. Both
cases contain only three particles. All three particles are considered to be
initialized inside the yellow grid cell and are predicted later into different other
neighbor cells (here all 3 particles belong to the same tracklet created for the
yellow cell). We consider that in both cases the same motion model and the
same measurement model is used. However a difference is that the particles in
the right image are extended with extra knowledge by incorporating 4
landmarks per particle. Intuitively one can see that in the left scenario all the
particles would receive a similar weight even they were predicted into different
cells. However, the right scenario gives us the possibility to better distinguish
between the three predicted particles as soon as we can match the landmarks
with the measured object contour. In this specific case the sample s? (with
blue landmarks) should receive a higher weight due to a better allignment of
the landmarks with the blob contour.

world and high-level object world by incorporating the partial
knowledge about object shape.

B. Multi-channel grid estimation

The second estimation part aims to integrate the
information that is organized into grid channels. As in the
current work the raw sensor data is structured within
occupancy and semantic channels, at each point in time ¢, for
each grid cell position we will define an appearance vector A¢
described by two values: an occupancy value o, and a semantic
label I

A, = o 1]" (4)
Similarly to the previous part, the object motion and

appearance estimation become joint estimation problem and
can be factored as:

P(Xey AelZy) = D(XelZ1.)D(A¢lXp) Z1.0)

= p(X¢|z1.0P (0 |Xe Z1.0)P (L |X e Z1.0) (%)

The two terms p(o;|X,, Z1..) and p(l;|X,, Z1..) represent the
occupancy and label posteriors that are conditioned on X; — the
object position and speed.

C. Combining the two problems into one estimator

Finally, the two update equations presented in the previous
sections can be combined into one estimator as:

P(Xe, Ap, QelZ1.e)
= p(X¢|Z1.e) P(0c|X¢, Z1.¢)

p(lelXy 21:¢) Hlk{:l p(qt,k |Xt' Zl:t) (6)



Therefore, for each occupied grid cell we initialize a
tracklet. The full posterior over tracklet positions, speed,
landmarks and appearance components is approximated by a
set of N particles:

o, 4, (@h 2D - (A 20 Wi ()

In the equation above the qu}( and £{'} define the mean and
2x2 covariance of the k-th landmark, assigned to the i-th
sample. We adopt an implementation based on a Rao-
Blackwellised particle filter that can be summarized as
follows. Each tracklet is represented by a population of
particles. The particles are sampled from the position and
velocity. Additionally, the appearance and landmark
properties are attached to each individual sample. Both the
appearance and landmark components contribute to a more
precise particle weighting and are updated in closed form at
the sample level.

IV. MLPT DETAILS

There are several steps to recursively estimate the dynamic
grid and its corresponding tracklets. Once new measurements
are available, the following steps are applied:

1) Prediction: In the prediction step the particles are
propagated according to their previous state and a linear
motion model assuming a constant velocity. Additionally,
each propagated sample is perturbed with a random noise
component.

2) Weighting: The weighting step consists in assigning new
importance weights to every predicted particle. Intuitively, a
weight should reflect how likely it is that a given sample
matches the observation. At a point in time ¢ the measurement
model is described by three individual components, a
measurement cell likelihood p(zf|s£l]) computed as a
distance function between the measurement cell and the
nearest particle, a landmark based likelihood p(zf'sy])

computed based on an alignment error between the
measurement contours and the particle landmarks and a

semantic likelihood p(zt ) given the particle’s semantics.

Further we will refer to these terms as weight factors as they
will contribute to defining the overall particle importance
weight. Therefore, if we consider that all three likelihood
components are independent, the weight wll of the i-th
[i]

particle s, can be defined as:

Wit = p(afsi") = p(at. 7

= p(zf[sJp(ailse"Jo =z

Next, we’ll describe how the three weight components are
calculated. For calculating the particle-to-measurement
correspondences and distances we precompute two maps, one
for defining all distances to the closest occupied points (see
Fig. 4, center) and second for defining all distances to the
closest measurement contours (see Fig. 4, right). Additionally,
each map cell stores the position to the closest observation.
The particle-to-measurement weight component is calculated
as:

)

si) (®)

L i

Figure 4. Occupancy grid. Center: the distance transform in which a cell has
an assigned distance to the closest occupied point. The colors gradually change
from blue (low distances) to red (larger distances). The occupied points (inside
the object) have zero distance (dark blue). Right: a similar distance transform
in which one cell stores the distance to the closest contour point. The contour
points are colored with red. (the contour point color is not related to the
distance transform values). It must be noted that both inside and outside object
points are considered in the distance transform computation.

| _ 1 _ a5
p(zf[st") = G exp(=35) ©)

where d,, is the distance between the i-th sample and the

closest occupied point. We model an object contour point
likelihood given the k-th particle landmark as:

[kly2
k1 _ _1 )
Wi = \2ray ex { 20‘12 } (10)

where dl[k] represents the distance between the k-th landmark
and its corresponding contour point defined by the distance
map (see Fig. 4). Thus, for a total of K landmarks the
p(zt|st ) factor assigned to the i-th particle can be computed

according to:

P(Zt|5t ) [T wl (11)
For the semantic weight factor we first define a dissimilarity
metric between the predicted label [, (particle label) and the
measurement label [, retrieved from the closest occupied
object cell:

ds=1-m" h(lp: lm) (12)
Here h(l,, ;) is a score function that is defined as:
Cq, lp = lm
h(L,, 1y,) = { ¢z, either L, or Ly, is unknown (13)
3 by # Iy

and 7; is a normalization constant: 1; = 1/(c; + ¢, + ¢3)
having ¢;, ¢, and c3 as three score values selected such that
¢3 < ¢, < ¢q. The resulted dissimilarity distance is converted
into the semantic weight factor according to:

[i] 1
St) Tomo, xp(=

3) Update the appearance and landmarks: As presented
before, according to the Rao-Blackwellisation process, each
particle has its own local landmark and appearance estimates.
In order to update the particle landmarks with the newly

p(z = (14)



Figure 5. Left: examples from real traffic scenarios. Top-right: the estimated
dynamic tracklets described by oriented speed vectors. The scene shows one
stationary and four moving cars. Bottom-right: an example with the estimated
grid cells (top view) depicting one stationary vehicle and several walking
pedestrians. Both the dynamic tracklets and grid cells are colored based on the
estimated speed orientation and magnitude. Black is for static objects, the
color values are used to encode the speed orientation.

associated (closest) contour point positions we use 2x2
Kalman filters (one per landmark). It must be noted that,
similarly to [20], the landmark prediction is indirectly done by
the particle prediction (the landmarks are conditioned on the
particle state) and follow the motion of the particle.
Additionally, as also proposed in [23], for each particle its
occupancy value is updated with the new measurement
occupancy by using a Binary Bayes filter. However, for the
simplicity, the semantic labels are kept unchanged.

4) Estimation: In the estimation step, a weighted average of
the particle states is used to estimate both: the grid cell states
and the tracklet states. The grid cell state is estimated by using
all the particles projected into the same cell (regardless the
tracklet index). However the tracklet state is estimated by
considering only its own samples, even if these particles are
projected into multiple cells.

5) Resampling and tracklet management: Assuming that
the particle weights are normalized, for each tracklet, the
resampling step selects a new set of particles from the previous
set according to their importance weight by replacing the
particles with lower weights. For the resampling step, a
Stochastic Universal Resampling algorithm with linear
complexity is used.

The last two steps of the particle filter are tracklet initialization
and removal. New tracklets are initialized in measurement
cells that are not sufficiently covered by particles. This is
checked by computing the sum of unnormalized weights for
all the particles located in the measurement cell. If the resulted
sum is less than a given threshold, a new tracklet will be
initialized by drawing new random hypotheses around the
measurement cell.

Figure 6. Top-left: a scenario with one pedestrian crossing in front of the ego-
vehicle from right-near to left-far. Bottom-left: to better illustrate the
estimation at the tracklet level we selected only one tracklet to be visualized
and deactivated the others. The image shows the trajectory of the selected
tracklet (top view). The red dots represent the estimated tracklet landmarks
while the colored segments show the estimated speeds along the trajectory.
Right: the visualization of the same scene (top-left image). The green vectors
denote the target speeds while the cyan dots represent all the estimated
landmarks from all the existing tracklets in the scene. It can be noted that these
landmark positions follow the object shape.

Figure 7. Top: a simulated scenario containing one pedestrian moving in an
eight-shape trajectory. Bottom-left: the trajectory of the moving pedestrian.
Bottom-center: the extracted dynamic tracklets represented by speed vectors.
Bottom-right: the estimated dynamic grid with colored cells. Both tracklets
and estimated grid cells are two alternative ways to represent the same target
and are colored based on motion direction and magnitude.

The tracklets and their corresponding particles are
discontinued, if they are outside the grid area, or if they are not
observed or updated for a longer time.

V. EXPERIMENTAL RESULTS

For the evaluation, the proposed approach was tested on
various recorded traffic sequences. In addition, in order to be
able to confirm the improvements in terms of the result
accuracy, we have compared our method with a similar
algorithm based on simulated data.

Fig. 5 presents some examples of the dynamic environment
estimation for real traffic scenarios, including the estimated
dynamic tracklets (top-right image) and the dynamic grid
(bottom-right image). Both the dynamic tracklets and grid
cells are colored based on the estimated orientation and speed.
The results include various obstacles such as static cars,
vehicle crossing in front of the ego-car, vehicles behind the
ego-car, or pedestrians walking in the proximity.



TABLE L. SPEED AND DISTANCE ESTIMATION ACCURACY
Method DS-PHD [7] MLPT (ours)
Metric RMSE StdDev RMSE StdDev
Speed 0.6884 0.2572 0.3641 0.3496
Distance | 0.3666 0.2799 0.3167 0.1445
Nr. of R
particles 8 Mil Approx. 8500

Fig. 6 presents a scenario with one pedestrian crossing in
front of the ego-vehicle from right to left (top image). To better
illustrate the estimation at the tracklet level we activated only
one tracklet to be visualized and deactivated the others. The
trajectory of the selected tracklet can be seen in the bottom-left
image (top view). The red dots describe the estimated tracklet
landmarks, while the colored segments show the estimated
speeds along the pedestrian trajectory. If we activate the
visualization of all the estimated tracklets and their landmarks,
then we can observe that they are explicitly describing the
object shape (see Fig. 6, bottom-right image).

In order to conduct the quantitative evaluation we used a
simulation environment (see Fig. 7). Basically the simulation
data, replaced the input sensors and was able to provide the
object position ground truth at the grid cell level. The proposed
approach Multi-Layer Particle Filter based Tracking (MLPT)
was compared with a similar grid-based tracking solution — the
Dempster-Shafer Probability Hypothesis Density tracking for
Dynamic Occupancy Grid Maps (we will refer to it as DS-
PHD) [7]. The main objective of our quantitative experimental
results was to analyze the algorithm convergence and their
estimation accuracy in terms of root mean squared error
(RMSE) and standard deviation of the estimated speed and
distances. The simulated scenario included a pedestrian
moving in an eight-shape trajectory (see Fig. 7) with a constant
speed of 2.78 m/s (10km/h). The number of particles in the
DS-PHD method was set to 8 Milion and remained fixed.
However, in the current MLPT solution the number of
particles was fixed to 100 particles per tracklets and depended
on how many tracklets were used. Additionally, in this test we
used 3 landmarks per particle. On average, the current
experiment employed about 85 tracklets at a given point in
time, which means 8500 particles. For the object speed
calculation we selected only the cells with an estimated
occupancy probability above 0.7.

The last two images in Fig. 7 (bottom-center and bottom-
right) show an example of the estimated tracklets and grid cells
by applying our approach. The speed estimation results of both
DS-PHD and proposed MLPT approach are shown in the Fig.
8 and Table I. It can be seen that the proposed extended particle
state helps the estimator to converge faster towards the
ground-truth value and provides a more accurate estimation
over time. It must be noted that although the DS-PHD tends to
underestimate the speed in this example it provides similar
values if we increase the occupancy threshold when computing
the estimated speed by selecting the cells with the occupancy
above 0.8. This could be explained by the fact that in the DS-
PHD the occupancy is given by the particle density. The higher
the particle density the higher the estimation accuracy is.

Fig. 9 presents the distance estimation. For the comparison
we used the shortest distance from the ego-vehicle to the

closest occupied point. Both compared methods tend to
slightly underestimate the distance calculation. This is
explained by the fact that particles are spread on a larger area
around the target, therefore, depending on the parameter set,
the estimated objects might be larger, and this is translated to
a difference to up to 0.5m in distance.

Fig. 10 shows the estimated orientation. Since the
orientation ground truth is not directly provided, the diagram
presents comparative orientation estimations. The difference
in the algorithm convergence can be also observed here. As the
MLPT approach converges faster to the real object trajectory,
its orientation is provided earlier (the DS-PHD plotted line is
slightly delayed by being shifted to the right).
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Table I centralizes the root mean squared error (RMSE)
and standard deviation (StdDev) for the speed and distance
using the two methods.

The DS-PHD algorithm is described by a highly-efficient
parallel implementation (see [7] for more details), while the
presented MLPT method was implemented and tested on a
CPU architecture. However, based on the results presented
above, one of the first observations is that the MLPT solution
requires much less particles to estimate the dynamic state due
to a more precise particle to measurement matching. This is
explained by the fact that MLPT uses more rich particles
extended with a set of landmarks which represent the partial
knowledge about the shape of the tracked object hypothesis.

VI. CONCLUSIONS

This work focused on bringing new improvements in the
dynamic grid map level for a better environment
representation. Our main objective was to model and test a
more generic and, at the same time, flexible method to track
free-form environments. We developed a probabilistic
solution based on a particle filter that combines two important
perception tasks: fusing multi-sensor data into one estimator
and stabilizing the residual errors in the position and speed
estimation. The results prove that the idea of using richer
particles including shape and appearance information
increase the grid estimation accuracy. Although, grouping
particles into individual tracklets and using hybrid filters has
a potential to develop real time solutions, this topic has not
been fully explored yet. One of the future works would be to
focus on optimizing the current approach, as well as
incorporating new grid channels such as the velocity grid
computed from radar measurements.
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